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Abstract

Investigators studying the primary culprit responsible for Alzheimer disease have, for the past two decades, primarily focused on
amyloid-� (A�). Here, we put A� on trial and review evidence amassed by the prosecution that implicate A� and also consider arguments
and evidence gathered by the defense team who are convinced of the innocence of their client. As in all trials, the arguments provided by
the prosecution and defense revolve around the same evidence, with opposing interpretations. Below, we present a brief synopsis of the
trial for you, the jury, to decide the verdict.Amyloid-�: guilty or not-guilty?
© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Alzheimer disease; Cell death; Neurodegeneration; Neurotoxicity; Oxidative stress; Phosphorylated tau

The execution date for amyloid-� (A�) is now immi-
nent. Vaccination of A� to Alzheimer disease (AD) patients,
via an intranasal or intravenous route, is, in many people’s
opinion, going to improve the disease course by removing
(killing) intracerebral A� senile plaques[112]. However,
many others argue that a gross miscarriage of justice is about
to occur and that executing A� still leaves the killer loose in
the brain. The aim of this review is to, in effect, put A� on
trial in front of a jury of readers by presenting evidence used
by the prosecutors and defenders of A�. The prosecution,
backed by public opinion eager to pin the blame on some-
thing, argues for guilt based on the fact that amyloid burden
in the brain is correlated with dementia, that A� deposits
are found in regions of the brain susceptible to neurodegen-
erative processes and that A� production is increased in all
inherited forms of the disease[114]. Additionally, A� is a
known killer of neurons in vitro[95,145] and surely must
wreak the same carnage in the human brain. On the other
hand, the defense, in the face of an overwhelming number
of publications implicating A� as the major culprit in AD
pathophysiology, argue for the innocence of A� as either
an innocent bystander or a maligned protector of the brain
[125]. The following represents a brief synopsis of the trial
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and, while the scientific debates continue to encircle this is-
sue, it is our hope that this trial will define the questions that
remain to be answered by both sides.

1. The Prosecution

When investigating the crime scene of AD, namely the
brain tissue of patients, it is quite obvious why A� is the
primary suspect in disease pathogenesis. In fact, some of
the earliest detectives studying the biochemistry of the AD
brain determined that the A� peptide is the major con-
stituent in two of the most distinctive pathologies, namely
senile plaques and cerebral amyloid angiopathy[39,40,75].
A� is derived by proteolytic cleavage of A� precursor pro-
tein (A�PP), a protein of unestablished cellular function
that has the general motif of a surface receptor[61,87]. Re-
gardless of the fact that A�PP is a transmembrane protein
in the neuronal plasma membrane, a secretory pathway in
the Golgi apparatus processes the large majority of the pro-
tein before it ever reaches the cell surface[19,24,67]. While
it was originally thought that A� represents an abnormal
cleavage product, A� has been since been established as a
normal product of neuronal A�PP metabolism, found in the
cerebral spinal fluid (CSF) and serum of healthy individ-
uals [45,118]. Differential activity between three different
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secretases,�, � and�, at their specific cleavage sites yields
a number of different products, including A�1–40 and
A�1–42 [120]. While A�1–40 is the predominant product of
this proteolytic pathway, A�1–42 is far more fibrillogenic
in vitro and is the major A� species present in the core
of senile plaques (both AD and non-AD related)[13,56].
The deposition of A�1–40 and A�1–42 into senile plaques
likely begins with the nucleation of soluble A�1–42 into fib-
rils followed by accumulation of normally soluble A�1–40
[56]. Micro-environmental changes in the brain, such as
pH, metal ion availability and oxidants, likely impact upon
A� structural conformation and its deposition in amyloid
plaques[6,123]. As of late a great deal of attention has also
been focused on the fact that soluble forms of amyloid that
are pre-fibrillar may also be involved in AD pathogenesis
[69]. However, soluble forms of A�, including oligomers,
correlate quantitatively with the number of senile plaques
[130] and, therefore, all of the prosecution’s (and defense’s)
arguments apply equally to all forms of A�.

The destructive nature of A� is evident from a close
examination of histological preparations in the immediate
vicinity of senile plaques revealing degenerative dendritic
processes surrounding and infiltrating the plaques[36].
Additionally, regions severely affected by disease, includ-
ing the hippocampus and frontotemporal cortices, show
colocalization between A� plaques and neuronal cell death
[107]. This led investigators to explore whether A� is toxic
to neurons in both in vitro culture assays and in the intact
brain of animals. The results of these experiments at first
seemed extremely contradictory, stemming from lot-to-lot
variability in the peptide and the lack of proper control
over whether A� was aggregated into fibrils of�-sheet
conformation[28]. Nonetheless, it is now established that
fibrillation of A� is required to obtain neurotoxic effects
[71,97,146]and that it is inherently toxic to neurons and
clonal cell lines in culture[95,145]. Toxicity of the pep-
tide has been shown to reside in between amino acids 25
and 35[98]. The neurotoxicity of the peptide in vivo was
likewise assessed by infusion of the peptide in a variety of
animal models. Notably, intracortical injection of A�1–42 or
A�25–35 fragments into aged rats or primates produced le-
sions reminiscent to those seen in AD patients[66]. In vivo
injection of A� into the brain also led to neurodegeneration
and dystrophic neurites in hippocampal neurons[95,96].

The source of A� toxicity has yet to be established,
however, a number of theories have been advanced. The
possibility that A� may act through a cell surface recep-
tor and thereby trigger an intracellular signaling cascade,
while not being eliminated as a possibility, is supported by
little experimental evidence. Numerous studies have since
supported the idea that an oxidative event is critical for A�
toxicity (reviewed in[76]). It is thought that the peptide is
capable of generating reactive oxygen species (ROS), which
is supported by the fact that A� peptides can induce the
generation of H2O2 [48,54,55], can stimulate inflammatory
cells to produce ROS[1,15,81,135]and that neurotoxicity

can be attenuated by administration of anti-oxidants and free
radical scavengers, such as Vitamin E[9]. The prooxidant
potential of A� also is supported by in vivo evidence where
deposits are associated with oxidative damage[7,122,124]
and such damage is, like A� deposition [113], viewed
as an extremely proximal event in disease pathogenesis
[89,90]. However, while it is clear that A�, either directly
or indirectly, promotes oxidative stress and that toxicity
can be attenuated by anti-oxidants, the precise mechanism
by which amyloid deposition leads to increased oxidative
stress remains elusive. Indeed, while studies have suggested
that the neurotoxicity of aggregated A� is mediated by its
ability to induce oxidative stress via the spontaneous gen-
eration of free radicals and ROS[48], this proposition has
been questioned on theoretical and methodological grounds
[31,110,133]. Instead, it now appears that the oxidant effects
of A� are mediated by its interaction with redox-active met-
als such as iron and copper since chelation treatment of A�
significantly attenuates toxicity[109]. Significantly, A� has
an unusually high affinity for both iron and copper[6,29,53]
and is capable of reducing these metals with subsequent
production of hydrogen peroxide and oxidized amyloid
[54,55]. The relevance of this mechanism to disease patho-
genesis is highlighted by the association of redox active
metals with senile plaques in AD[111,123]. In addition, the
deposition of this normally soluble cellular protein promotes
a chronic inflammatory response of the AD brain, whereby
activated microglia release ROS as part of the respiratory
burst (reviewed in[8]). Therefore, A� likely has much to
answer for with regards to the oxidative damage observed
in the AD brain.

Perhaps the strongest evidence for the crucial role played
by A� in AD pathogenesis has been the characterization
of the mutations that underlie familial early onset cases of
the disease. All of these inherited mutations directly or in-
directly affect the processing and accumulation of A�. The
most straightforward form of familial Alzheimer disease
(FAD) is caused by point mutations in A�PP in regions that
are involved in the proteolytic processing of the peptide
[41,70]. It is thought that these mutations accelerate the
onset of AD into the fourth decade by increasing the ratio
of A�1–42/A�1–40, thereby increasing the relative amount
of the more fibrillogenic form[128]. A double mutation at
positions 670/671 (Swedish mutation) increases the produc-
tion of total A� and thereby increases the load of A�1–42
without changing the relative ratio[18,23]. The fact that
an increase in total A� load can accelerate the deposition
of A� is supported by the neuropathology demonstrated in
patients with Down syndrome, a disorder caused by trisomy
of chromosome 21, where the A�PP gene is localized. It is
thought that the overexpression of A�PP in these individu-
als [44] causes the formation of A� plaques very similar to
those seen in the AD brain. The most common form of FAD
is caused by mutations in one of the two presenilin genes
(PS1 on chromosome 14 or PS2 on chromosome 1) (re-
viewed in[43]). While the function of the presenilin genes
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are not completely elucidated, it is known that the presenilin
proteins localize to the endoplasmic reticulum and Golgi
apparatus[65] and form stable complexes with A�PP[142].
Most importantly however, missense mutations in the pre-
senilin genes likewise increase the ratio of A�1–42/A�1–40
[25,131]. Finally, it has been demonstrated that one allele
of the apolipoprotein E gene, namely ApoE4 predisposes
individuals to the development of late-onset AD[26]. Of the
three alleles (also including ApoE2 and ApoE3), ApoE4 has
the greatest affinity for A�, is found associated with senile
plaques and is thought to accelerate fibrillogenesis[141]. In-
terestingly, ApoE2 is capable of inhibiting the formation of
fibrils and is protective against the development of AD[27].

This strong evidence implicating A� in AD pathogenesis
led to the supposition that generation of transgenic ani-
mals either over expressing A�PP or containing a mutation
in A�PP that affects processing of the full length protein
thereby leading to an increase in the A�1–42/A�1–40 ratio,
may mimic the symptomatology of AD. Taken as a group,
the various transgenic mice strains that have been produced
have demonstrated that overexpression of A�PP or over-
production of the A�1–42 peptide fragment is sufficient
to cause deposition of the peptide into senile plaque-like
structures and may in fact be responsible for at least some
of the neurodegeneration in AD (reviewed in[50]). In-
deed, despite the fact that each of the different constructs
introduced yielded somewhat different phenotypes, some
aspect of AD pathophysiology are apparent in each. For
example, Games et al. created a transgenic mouse express-
ing human A�PP with the Val717Phe mutation at 10 times
the endogenous level and these animals developed amyloid
plaques in the hippocampus, cerebral cortex and corpus
collosum by 6–9 months of age and also show synaptic
loss and astrocytosis, although they show no behavioral
abnormalities[35]. Among the first models to demonstrate
behavioral changes reminiscent of those seen in AD, over-
expressed A�PP containing the Swedish double mutation
(Lys670Asn/Met671Leu). In addition to a marked increase
in levels of A� in the CSF and deposition of amyloid
plaques, these mice demonstrated marked deficits in spatial
learning, as demonstrated by Morris water maze, by the age
of 9 months[52]. Although no neurotoxicity was observed in
these mice, it is thought that their impaired spatial learning,
which is correlated with long-term potentiation (a model
for memory), is related to synaptic loss. Interestingly, these
mice also displayed oxidative stress in association with the
plaques, much like that seen in AD[124]. Neurotoxicity has
also been seen accompanied by an increased mortality rate,
with 50% of mice dying by 12 months of age compared to
an average of 24 months in controls, in mice overexpressing
A�PP[68]. Although there are differences in the details of
these studies, it is clear that A� can independently cause
AD-related pathology and some behavioral defects.

Taken together, the aforementioned evidence clearly
points the suspicion of doubt at A� as being an instrumen-
tal, if not the sole, culprit for causing disease.

2. The Defense

It is obvious that proponents of the causative role of A�
in AD have a great deal of evidence in their arsenal and
the preceding discussion would be sufficient to convince
most juries of its guilt. Unfortunately, however, much of this
evidence is circumstantial and in many cases the prosecution
failed to discuss the caveats that create uncertainties as to the
role of A� in AD. While we by no means intend to suggest
that A� plays a negligible role in disease pathogenesis, it
is very unlikely that the peptide is the main mediator of
neurodegeneration.

The first, and perhaps most poignant, argument is the fact
that deposition of A� into senile plaques is by no means
specific to AD patients and in fact seems to be characteristic
of normal aging[30]. The incidence of amyloid plaques in
control individuals increases with age, as does the incidence
of AD, and the number of plaques in cognitively normal
individuals can rival those seen in advanced disease[74].
Even within those patients with AD, there is only a weak
correlation between the burden of A� and neuronal loss
or cognitive impairment[30,86]. Additionally, increased
amyloid production and deposition is observed in response
to injury to the central nervous system, including ischemia
and head trauma[37,38,106]. Also, despite marked amy-
loid deposition in the brains of Down syndrome patients
by the fourth decade, there is little evidence of further cog-
nitive decline. Therefore, it appears that A� deposition is
insufficient to develop full fledged AD. Rather it seems that
A� may be produced in the disease as a cellular protec-
tive factor to compensate for the primary insult that causes
AD [58,59,125]. This is not to imply that, in attempting
to respond to cellular stresses, A� does not produce some
cellular destruction while maintaining the integrity of the
whole. However, it does require an underlying pre-existing
stress, i.e. the presumable causative insult of AD.

A review of the literature would indicate that the un-
derlying stress is an energetic one, since a shortage of
energy supply (and Ca(II) overload) induces an upregu-
lation of A�PP expression. Ischemia, hypoglycemia and
traumatic brain injury, a condition that has been shown
to put neurons under metabolic stress[143], all upregu-
late A�PP and its mRNA in animal models and culture
systems[46,57,83,115–117,147]. Not only does energy
shortage and Ca(II) dysregulation promote A�PP expres-
sion, but they also route the metabolism of A�PP from the
non-amyloidogenic to the amyloidogenic pathway. Inhibi-
tion of mitochondrial energy metabolism alters the process-
ing of A�PP to generate amyloidogenic derivatives[34,77],
while oxidative stress has been shown to increase the gen-
eration of A� [32,82,93]. Consistent with this response A�
has been detected in the human brain several days after
traumatic brain injury[38]. This fits well with the role of
A�PP as an acute phase reactant upregulated in neurons,
astrocytes and microglial cells in response to inflammation
and a multitude of associated cellular stresses including
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axonal injury[11,38], loss of innervation[138], excitotoxic
stress[92,132], heat shock[22], oxidative stress[32,144],
aging [49,88,134]and inflammatory processes[12]. Other
pro-inflammatory stimuli that mediate the synthesis and
release of A�PP include IL-1� [16,42] and TNF� convert-
ing enzyme[17]. The increased expression of A�PP by
these stress conditions is likely a result of decreased energy
supply.

The increased generation of A� under conditions of en-
ergetic stress may therefore be a response to the oxidative
challenge observed in the brain in AD and following in-
jury. In this vein, A� may in fact play a protective role.
In support of this claim, the A� amyloid burden of the
AD-affected brain has been shown to be significantly neg-
atively correlated with oxidative stress markers[29,89,90]
and in situ, soluble A� levels are inversely correlated with
synaptic loss[72]. This argues against the neurotoxic role
of A� in vivo, as does the fact that cultured neurons can
be cultured directly on top of isolated A� plaques with
out any notable toxicity[20]. Some have suggested that
the in vitro toxicity that has been sporadically shown in
culture, and very unreliable in animal models, may in fact
be an artifact of culture and not intrinsic to the peptide
itself [109]. Notably, A� appears to blunt oxidative stress
in vivo [90,91] likely acting as an anti-oxidant[14]. More-
over, nanomolar concentrations of A� can block neuronal
apoptosis following trophic factor withdrawal[21]. These
findings are consistent with the trophic and neuroprotective
action of A� at physiological concentrations in deprived
conditions and neonatal cells that have been reported during
the last decade[9,60,64,73,100,119,127,129,139,140,145].
A� also has been shown to protect neurons from death
following injection of saline or iron [10] and pro-
tect lipoproteins from oxidation in cerebrospinal fluid
and plasma (the mechanism of which is thought to
involve metal ion sequestration)[6,62,63]. Moreover,
Andorn and Kalaria[2] recently showed that low con-
centrations of A� possess significant anti-oxidant activ-
ity in an ascorbate-stimulated-lipid-peroxidation assay of
post-mortem human brain membrane preparations. Together,
these data provide a plausible physiological explanation for
the increased generation of A� in AD and following head
trauma, one that is aimed at reducing oxidative damage
thereby preventing ROS-mediated neuronal apoptosis[105]
and promoting neurite outgrowth.

Neurons are particularly vulnerable to oxidative stress
as a consequence of high oxygen utilization, the high un-
saturated lipid content of neuronal membranes and the
post-mitotic nature of primary neurons. As a result, the
balance between the production of ROS and anti-oxidant
defenses are essential for proper neuronal function. Nor-
mally, anti-oxidant defense systems prevent any damage
potentially produced by oxygen radicals. However, in cases
of age related neurodegeneration, there is considerable
oxidative imbalance, as demonstrated by accumulation of
reversible and permanent alteration of cellular proteins and

nucleic acids (reviewed in[108]). Given the fact that A� has
been associated with the production of free radicals, it is es-
sential to consider the spatio-temporal relationship between
oxidative stress phenomena and A� deposition. Notably,
oxidative stress is found in normal appearing susceptible
neurons in AD brain and seems to be inversely correlated
with A� deposition [89,90]. It therefore seems unlikely
that A� accumulation is sufficient to explain the oxida-
tive imbalance. Vulnerable neurons also display cell cycle
abnormalities that are uncharacteristic of terminally dif-
ferentiated neuronal populations. Despite the fact that suc-
cessful nuclear division has yet to be demonstrated, a large
number cell cycle regulators, both drivers and inhibitors of
the cell cycle checkpoints, have been found in association
with AD lesions and normal-appearing susceptible neurons
[3–5,47,78–80,84,85,101–104,121,136,137,148–151]. Al-
though the precipitating factors for this type of regulation
have yet to be elucidated, a number of other AD-related
phenomena can be linked to cell cycle abnormalities, in-
cluding tau hyperphosphorylation, increased production
and processing of A�PP and oxidative stress (reviewed in
[104,108]).

Perhaps the strongest evidence for the role of A� in AD is
that each of the familial forms of the disease involve a mu-
tation or polymorphism of genes that are directly involved
in A�PP processing (see above). A tremendous amount of
effort and resources have been dedicated in the past several
decades to determining the mechanism of disease of these
mutations. While this line of research has been fruitful in
characterizing FAD, it has proven only marginally useful to
our understanding of sporadic AD, which by far represents
the majority of cases. For example, mutations in A�PP have
been identified in only 20–30 families world wide and rep-
resent less than 0.1% of the 15 million known cases of AD.
Mutations in both presenilin 1 and 2, which are the most
common genetic determinant of AD, only contribute an ad-
ditional 120–130 families. While it is clear that mutations in
these proteins involved in A�PP processing are capable of
inducing amyloid neuropathies and dementia, no aberrant
neurologies are observed usually for many decades, and even
then, this is likely a result of the advanced deposition of A�
in these individuals (the joint result of increased A� con-
centration and microenvironmental conditions) leading to
the chronic neuroinflammation associated with the disease.

The prosecution’s claim that the positive correlation be-
tween ApoE4 genotype and incidence of AD supporting a
causative role for A� is likewise flawed. While it is true
that ApoE4 has the greatest affinity for A�, is found as-
sociated with senile plaques and is thought to accelerate
fibrillogenesis[141], this is not the sole or even the ma-
jor physiological role of ApoE proteins. In the periphery,
it is known that ApoE helps to regulate the transport and
metabolism of lipids. It is also well established that the level
of ApoE is elevated in response to injury in the peripheral
and central nervous system[51] and, like A�, ApoE may
thereby serve a protective role after ischemia or traumatic
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brain injury by distributing phospholipids and cholesterol
to injured neurons[99]. ApoE may also protect against
oxidative injury and prevent the accumulation of lipid per-
oxidation end products, such as hydroxynonenal, which are
prominent features in AD and acute brain injury. In this
vein, several studies showed that patients with homozygous
ApoE4 genotype have longer periods of unconsciousness
and higher incidence of post-traumatic coma following
severe traumatic brain injury[33,126]. In short, ApoE4
predisposes patients for any number of neurodegenerative
processes and is another factor that is completely unspecific
to AD. Therefore, much like in acute injury, ApoE4 may be
associated with a higher incidence of AD because it is less
efficient in protecting neurons from the causative insult and
therefore may have very little to do with its affinity for A�.

In sum, the defense argues that A� simply represents
an innocent bystander rather than the culprit of disease
[94,125].

3. Note added in press

Since the article was originally written, the removal of A�
from patients with AD has been attempted as a therapeutic
strategy. The technique involved immunizing patients with
A�, a strategy which showed promise in reducing plaque
burden in transgenic mice[112]. However, the clinical tri-
als were suspended in March of 2002 when many patients
developed acute exacerbation of symptoms, including con-
fusion and inability to perform tasks[153–155]. While Elan
Pharmaceutical Corporation has yet to release the details of
the trials[152], one wonders whether this is major victory
for the defense who said all along that A� was a much ma-
ligned protector of the brain and that removal would only
serve to increase injury[58,59,94]. However, unfortunately,
there are no rules against double jeopardy in science and
A� will surely be accused and brought to trial again.

4. Concluding remarks

AD is a devastating condition and patients, caregivers,
clinicians and scientists are eager to find the culprit and
cure the disease. Whether A� is the culprit, as argued by
the prosecution, or a bystander, as argued by the defense, is
clearly important to decipher. All investigations start with
multiple suspects, even multiple prime suspects, and it is the
hope of all involved that we have the answer soon and can
put this killer to rest.
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